MakeItFrom.com
Menu (ESC)

CC760S Brass vs. AISI 444 Stainless Steel

CC760S brass belongs to the copper alloys classification, while AISI 444 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 180
470
Tensile Strength: Yield (Proof), MPa 80
310

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 940
1420
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
23
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 40
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
95
Resilience: Unit (Modulus of Resilience), kJ/m3 29
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 5.8
17
Strength to Weight: Bending, points 8.2
17
Thermal Diffusivity, mm2/s 45
6.2
Thermal Shock Resistance, points 6.2
16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 83 to 88
0
Iron (Fe), % 0 to 0.15
73.3 to 80.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.1
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 10.7 to 17
0