MakeItFrom.com
Menu (ESC)

CC760S Brass vs. EN 1.7767 Steel

CC760S brass belongs to the copper alloys classification, while EN 1.7767 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Tensile Strength: Ultimate (UTS), MPa 180
670 to 690
Tensile Strength: Yield (Proof), MPa 80
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 940
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 40
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.5
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 43
33
Embodied Water, L/kg 320
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 29
570 to 650
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 5.8
24
Strength to Weight: Bending, points 8.2
22
Thermal Diffusivity, mm2/s 45
11
Thermal Shock Resistance, points 6.2
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 83 to 88
0 to 0.25
Iron (Fe), % 0 to 0.15
93.8 to 95.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.1
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.020
0 to 0.15
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 10.7 to 17
0