MakeItFrom.com
Menu (ESC)

CC760S Brass vs. Grade M35-1 Nickel

CC760S brass belongs to the copper alloys classification, while grade M35-1 nickel belongs to the nickel alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is grade M35-1 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
160
Elongation at Break, % 22
28
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
62
Tensile Strength: Ultimate (UTS), MPa 180
500
Tensile Strength: Yield (Proof), MPa 80
190

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 1000
1280
Melting Onset (Solidus), °C 940
1240
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 150
22
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 40
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
55
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 43
120
Embodied Water, L/kg 320
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
120
Stiffness to Weight: Axial, points 7.2
10
Stiffness to Weight: Bending, points 19
21
Strength to Weight: Axial, points 5.8
16
Strength to Weight: Bending, points 8.2
16
Thermal Diffusivity, mm2/s 45
5.7
Thermal Shock Resistance, points 6.2
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Carbon (C), % 0
0 to 0.35
Copper (Cu), % 83 to 88
26 to 33
Iron (Fe), % 0 to 0.15
0 to 3.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0 to 0.1
59.8 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.020
0 to 1.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 10.7 to 17
0