MakeItFrom.com
Menu (ESC)

CC760S Brass vs. C14510 Copper

Both CC760S brass and C14510 copper are copper alloys. They have 86% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 22
9.1 to 9.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 180
300 to 320
Tensile Strength: Yield (Proof), MPa 80
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 940
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 150
360
Thermal Expansion, µm/m-K 19
17

Otherwise Unclassified Properties

Base Metal Price, % relative 28
33
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 29
230 to 280
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 5.8
9.2 to 10
Strength to Weight: Bending, points 8.2
11 to 12
Thermal Diffusivity, mm2/s 45
100
Thermal Shock Resistance, points 6.2
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Copper (Cu), % 83 to 88
99.15 to 99.69
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 0 to 0.5
0 to 0.050
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0
0.010 to 0.030
Silicon (Si), % 0 to 0.020
0
Tellurium (Te), % 0
0.3 to 0.7
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 10.7 to 17
0