MakeItFrom.com
Menu (ESC)

CC760S Brass vs. C17500 Copper

Both CC760S brass and C17500 copper are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 22
6.0 to 30
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
45
Tensile Strength: Ultimate (UTS), MPa 180
310 to 860
Tensile Strength: Yield (Proof), MPa 80
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 190
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 1000
1060
Melting Onset (Solidus), °C 940
1020
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 150
200
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 40
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 28
60
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 2.6
4.7
Embodied Energy, MJ/kg 43
73
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 29
120 to 2390
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 5.8
9.7 to 27
Strength to Weight: Bending, points 8.2
11 to 23
Thermal Diffusivity, mm2/s 45
59
Thermal Shock Resistance, points 6.2
11 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.2
Arsenic (As), % 0.050 to 0.15
0
Beryllium (Be), % 0
0.4 to 0.7
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 83 to 88
95.6 to 97.2
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0 to 0.020
0 to 0.2
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 10.7 to 17
0
Residuals, % 0
0 to 0.5