MakeItFrom.com
Menu (ESC)

CC760S Brass vs. C34000 Brass

Both CC760S brass and C34000 brass are copper alloys. They have 78% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is C34000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 180
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 1000
930
Melting Onset (Solidus), °C 940
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 19
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
26
Electrical Conductivity: Equal Weight (Specific), % IACS 40
29

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 43
45
Embodied Water, L/kg 320
320

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 5.8
11 to 22
Strength to Weight: Bending, points 8.2
13 to 21
Thermal Diffusivity, mm2/s 45
37
Thermal Shock Resistance, points 6.2
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Copper (Cu), % 83 to 88
62 to 65
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0 to 0.5
0.8 to 1.5
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0 to 0.020
0
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 10.7 to 17
33 to 37.2
Residuals, % 0
0 to 0.4