MakeItFrom.com
Menu (ESC)

CC760S Brass vs. N08120 Nickel

CC760S brass belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 180
700
Tensile Strength: Yield (Proof), MPa 80
310

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 940
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
45
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 2.6
7.2
Embodied Energy, MJ/kg 43
100
Embodied Water, L/kg 320
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
190
Resilience: Unit (Modulus of Resilience), kJ/m3 29
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 5.8
24
Strength to Weight: Bending, points 8.2
21
Thermal Diffusivity, mm2/s 45
3.0
Thermal Shock Resistance, points 6.2
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.4
Arsenic (As), % 0.050 to 0.15
0
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 83 to 88
0 to 0.5
Iron (Fe), % 0 to 0.15
21 to 41.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.1
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 10.7 to 17
0