MakeItFrom.com
Menu (ESC)

CC760S Brass vs. N08330 Stainless Steel

CC760S brass belongs to the copper alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 180
550
Tensile Strength: Yield (Proof), MPa 80
230

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 1000
1390
Melting Onset (Solidus), °C 940
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 40
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
32
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.6
5.4
Embodied Energy, MJ/kg 43
77
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
150
Resilience: Unit (Modulus of Resilience), kJ/m3 29
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 5.8
19
Strength to Weight: Bending, points 8.2
18
Thermal Diffusivity, mm2/s 45
3.1
Thermal Shock Resistance, points 6.2
13

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 83 to 88
0 to 1.0
Iron (Fe), % 0 to 0.15
38.3 to 48.3
Lead (Pb), % 0 to 0.5
0 to 0.0050
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0 to 0.1
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.020
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0 to 0.025
Zinc (Zn), % 10.7 to 17
0