MakeItFrom.com
Menu (ESC)

CC760S Brass vs. S44635 Stainless Steel

CC760S brass belongs to the copper alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC760S brass and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
240
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 22
23
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 180
710
Tensile Strength: Yield (Proof), MPa 80
580

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 940
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 40
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
22
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.4
Embodied Energy, MJ/kg 43
62
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
150
Resilience: Unit (Modulus of Resilience), kJ/m3 29
810
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 5.8
25
Strength to Weight: Bending, points 8.2
23
Thermal Diffusivity, mm2/s 45
4.4
Thermal Shock Resistance, points 6.2
23

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Arsenic (As), % 0.050 to 0.15
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 83 to 88
0
Iron (Fe), % 0 to 0.15
61.5 to 68.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.1
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 10.7 to 17
0