MakeItFrom.com
Menu (ESC)

CC761S Brass vs. EN 1.1203 Steel

CC761S brass belongs to the copper alloys classification, while EN 1.1203 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC761S brass and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.7
12 to 15
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 540
690 to 780
Tensile Strength: Yield (Proof), MPa 340
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 910
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 27
48
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 43
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 300
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 530
310 to 610
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
25 to 28
Strength to Weight: Bending, points 18
22 to 24
Thermal Diffusivity, mm2/s 8.0
13
Thermal Shock Resistance, points 19
22 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 78 to 83
0
Iron (Fe), % 0 to 0.6
97.1 to 98.9
Lead (Pb), % 0 to 0.8
0
Manganese (Mn), % 0 to 0.2
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 1.0
0 to 0.4
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 3.0 to 5.0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 8.9 to 19
0