MakeItFrom.com
Menu (ESC)

CC761S Brass vs. Grade 19 Titanium

CC761S brass belongs to the copper alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC761S brass and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.7
5.6 to 17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
47
Tensile Strength: Ultimate (UTS), MPa 540
890 to 1300
Tensile Strength: Yield (Proof), MPa 340
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 170
370
Melting Completion (Liquidus), °C 960
1660
Melting Onset (Solidus), °C 910
1600
Specific Heat Capacity, J/kg-K 410
520
Thermal Conductivity, W/m-K 27
6.2
Thermal Expansion, µm/m-K 18
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
45
Density, g/cm3 8.3
5.0
Embodied Carbon, kg CO2/kg material 2.7
47
Embodied Energy, MJ/kg 45
760
Embodied Water, L/kg 300
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 530
3040 to 5530
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
33
Strength to Weight: Axial, points 18
49 to 72
Strength to Weight: Bending, points 18
41 to 53
Thermal Diffusivity, mm2/s 8.0
2.4
Thermal Shock Resistance, points 19
57 to 83

Alloy Composition

Aluminum (Al), % 0 to 0.1
3.0 to 4.0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 78 to 83
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.6
0 to 0.3
Lead (Pb), % 0 to 0.8
0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.0 to 5.0
0
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 8.9 to 19
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4