MakeItFrom.com
Menu (ESC)

CC761S Brass vs. SAE-AISI 1055 Steel

CC761S brass belongs to the copper alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC761S brass and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
220
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.7
11 to 14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 540
730 to 750
Tensile Strength: Yield (Proof), MPa 340
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 910
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 27
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
11
Electrical Conductivity: Equal Weight (Specific), % IACS 43
12

Otherwise Unclassified Properties

Base Metal Price, % relative 27
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 530
440 to 1070
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 8.0
14
Thermal Shock Resistance, points 19
23 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.5 to 0.6
Copper (Cu), % 78 to 83
0
Iron (Fe), % 0 to 0.6
98.4 to 98.9
Lead (Pb), % 0 to 0.8
0
Manganese (Mn), % 0 to 0.2
0.6 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 3.0 to 5.0
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 8.9 to 19
0