MakeItFrom.com
Menu (ESC)

CC762S Brass vs. EN 1.1118 Cast Steel

CC762S brass belongs to the copper alloys classification, while EN 1.1118 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC762S brass and the bottom bar is EN 1.1118 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.3
14 to 21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 840
700 to 750
Tensile Strength: Yield (Proof), MPa 540
460 to 630

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 350
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
97 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
550 to 1050
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 29
25 to 27
Strength to Weight: Bending, points 25
22 to 23
Thermal Diffusivity, mm2/s 15
14
Thermal Shock Resistance, points 27
22 to 24

Alloy Composition

Aluminum (Al), % 3.0 to 7.0
0
Antimony (Sb), % 0 to 0.030
0
Carbon (C), % 0
0.2 to 0.25
Copper (Cu), % 57 to 67
0
Iron (Fe), % 1.5 to 4.0
97.3 to 98.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
1.5 to 1.8
Nickel (Ni), % 0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 13.4 to 36
0