MakeItFrom.com
Menu (ESC)

CC762S Brass vs. SAE-AISI 5140 Steel

CC762S brass belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC762S brass and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170 to 290
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.3
12 to 29
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 840
560 to 970
Tensile Strength: Yield (Proof), MPa 540
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 51
45
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 350
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
220 to 1880
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 29
20 to 34
Strength to Weight: Bending, points 25
19 to 28
Thermal Diffusivity, mm2/s 15
12
Thermal Shock Resistance, points 27
16 to 29

Alloy Composition

Aluminum (Al), % 3.0 to 7.0
0
Antimony (Sb), % 0 to 0.030
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 57 to 67
0
Iron (Fe), % 1.5 to 4.0
97.3 to 98.1
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.7 to 0.9
Nickel (Ni), % 0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 13.4 to 36
0