MakeItFrom.com
Menu (ESC)

CC762S Brass vs. C61900 Bronze

Both CC762S brass and C61900 bronze are copper alloys. They have 70% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC762S brass and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.3
21 to 32
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 840
570 to 650
Tensile Strength: Yield (Proof), MPa 540
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 920
1050
Melting Onset (Solidus), °C 870
1040
Specific Heat Capacity, J/kg-K 420
440
Thermal Conductivity, W/m-K 51
79
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
11
Electrical Conductivity: Equal Weight (Specific), % IACS 32
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.1
Embodied Energy, MJ/kg 51
51
Embodied Water, L/kg 350
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
230 to 430
Stiffness to Weight: Axial, points 7.8
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 29
19 to 22
Strength to Weight: Bending, points 25
18 to 20
Thermal Diffusivity, mm2/s 15
22
Thermal Shock Resistance, points 27
20 to 23

Alloy Composition

Aluminum (Al), % 3.0 to 7.0
8.5 to 10
Antimony (Sb), % 0 to 0.030
0
Copper (Cu), % 57 to 67
83.6 to 88.5
Iron (Fe), % 1.5 to 4.0
3.0 to 4.5
Lead (Pb), % 0 to 0.2
0 to 0.020
Manganese (Mn), % 2.5 to 5.0
0
Nickel (Ni), % 0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.2
0 to 0.6
Zinc (Zn), % 13.4 to 36
0 to 0.8
Residuals, % 0
0 to 0.5