MakeItFrom.com
Menu (ESC)

CC762S Brass vs. S20433 Stainless Steel

CC762S brass belongs to the copper alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC762S brass and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.3
46
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 840
630
Tensile Strength: Yield (Proof), MPa 540
270

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 51
39
Embodied Water, L/kg 350
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
180
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 29
23
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 15
4.0
Thermal Shock Resistance, points 27
14

Alloy Composition

Aluminum (Al), % 3.0 to 7.0
0
Antimony (Sb), % 0 to 0.030
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 57 to 67
1.5 to 3.5
Iron (Fe), % 1.5 to 4.0
64.1 to 72.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
5.5 to 7.5
Nickel (Ni), % 0 to 3.0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 13.4 to 36
0