MakeItFrom.com
Menu (ESC)

CC762S Brass vs. S35500 Stainless Steel

CC762S brass belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC762S brass and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.3
14
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 840
1330 to 1490
Tensile Strength: Yield (Proof), MPa 540
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.1
3.5
Embodied Energy, MJ/kg 51
47
Embodied Water, L/kg 350
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
3610 to 4100
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 29
47 to 53
Strength to Weight: Bending, points 25
34 to 37
Thermal Diffusivity, mm2/s 15
4.4
Thermal Shock Resistance, points 27
44 to 49

Alloy Composition

Aluminum (Al), % 3.0 to 7.0
0
Antimony (Sb), % 0 to 0.030
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 57 to 67
0
Iron (Fe), % 1.5 to 4.0
73.2 to 77.7
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 2.5 to 5.0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 3.0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 13.4 to 36
0