MakeItFrom.com
Menu (ESC)

CC763S Brass vs. 5652 Aluminum

CC763S brass belongs to the copper alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC763S brass and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
47 to 77
Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 7.3
6.8 to 25
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 490
190 to 290
Tensile Strength: Yield (Proof), MPa 270
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 140
190
Melting Completion (Liquidus), °C 870
650
Melting Onset (Solidus), °C 830
610
Specific Heat Capacity, J/kg-K 400
900
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
35
Electrical Conductivity: Equal Weight (Specific), % IACS 32
120

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.6
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 330
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 340
40 to 480
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
51
Strength to Weight: Axial, points 17
20 to 30
Strength to Weight: Bending, points 17
27 to 36
Thermal Shock Resistance, points 16
8.4 to 13

Alloy Composition

Aluminum (Al), % 1.0 to 2.5
95.8 to 97.7
Antimony (Sb), % 0 to 0.080
0
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 56.5 to 67
0 to 0.040
Iron (Fe), % 0.5 to 2.0
0 to 0.4
Lead (Pb), % 0 to 1.5
0
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 1.0 to 3.5
0 to 0.010
Nickel (Ni), % 0 to 2.5
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 18.9 to 41
0 to 0.1
Residuals, % 0
0 to 0.15