MakeItFrom.com
Menu (ESC)

CC763S Brass vs. AWS BNi-6

CC763S brass belongs to the copper alloys classification, while AWS BNi-6 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is AWS BNi-6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
160
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 41
62
Tensile Strength: Ultimate (UTS), MPa 490
450

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Melting Completion (Liquidus), °C 870
880
Melting Onset (Solidus), °C 830
880
Specific Heat Capacity, J/kg-K 400
480
Thermal Expansion, µm/m-K 20
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
55
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.9
9.4
Embodied Energy, MJ/kg 49
130
Embodied Water, L/kg 330
210

Common Calculations

Stiffness to Weight: Axial, points 7.5
11
Stiffness to Weight: Bending, points 20
22
Strength to Weight: Axial, points 17
15
Strength to Weight: Bending, points 17
16
Thermal Shock Resistance, points 16
20

Alloy Composition

Aluminum (Al), % 1.0 to 2.5
0 to 0.050
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.060
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 56.5 to 67
0
Iron (Fe), % 0.5 to 2.0
0
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 2.5
87.2 to 90
Phosphorus (P), % 0
10 to 12
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 18.9 to 41
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5