MakeItFrom.com
Menu (ESC)

CC763S Brass vs. C33500 Brass

Both CC763S brass and C33500 brass are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 7.3
3.0 to 28
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 490
340 to 650
Tensile Strength: Yield (Proof), MPa 270
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 140
120
Melting Completion (Liquidus), °C 870
930
Melting Onset (Solidus), °C 830
900
Specific Heat Capacity, J/kg-K 400
390
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
26
Electrical Conductivity: Equal Weight (Specific), % IACS 32
29

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 49
45
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 340
69 to 860
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
12 to 22
Strength to Weight: Bending, points 17
13 to 21
Thermal Shock Resistance, points 16
11 to 22

Alloy Composition

Aluminum (Al), % 1.0 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Copper (Cu), % 56.5 to 67
62 to 65
Iron (Fe), % 0.5 to 2.0
0 to 0.1
Lead (Pb), % 0 to 1.5
0.25 to 0.7
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 2.5
0
Silicon (Si), % 0 to 1.0
0
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 18.9 to 41
33.8 to 37.8
Residuals, % 0
0 to 0.4