MakeItFrom.com
Menu (ESC)

CC763S Brass vs. C52100 Bronze

Both CC763S brass and C52100 bronze are copper alloys. They have 62% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 490
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 140
180
Melting Completion (Liquidus), °C 870
1030
Melting Onset (Solidus), °C 830
880
Specific Heat Capacity, J/kg-K 400
370
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
13
Electrical Conductivity: Equal Weight (Specific), % IACS 32
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 49
55
Embodied Water, L/kg 330
370

Common Calculations

Stiffness to Weight: Axial, points 7.5
7.0
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
12 to 25
Strength to Weight: Bending, points 17
13 to 22
Thermal Shock Resistance, points 16
14 to 28

Alloy Composition

Aluminum (Al), % 1.0 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Copper (Cu), % 56.5 to 67
89.8 to 93
Iron (Fe), % 0.5 to 2.0
0 to 0.1
Lead (Pb), % 0 to 1.5
0 to 0.050
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 2.5
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Tin (Sn), % 0 to 1.0
7.0 to 9.0
Zinc (Zn), % 18.9 to 41
0 to 0.2
Residuals, % 0
0 to 0.5