MakeItFrom.com
Menu (ESC)

CC764S Brass vs. AISI 301 Stainless Steel

CC764S brass belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC764S brass and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190 to 440
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
7.4 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 680
590 to 1460
Tensile Strength: Yield (Proof), MPa 290
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 130
840
Melting Completion (Liquidus), °C 850
1420
Melting Onset (Solidus), °C 810
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 94
16
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 49
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 390
130 to 2970
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
21 to 52
Strength to Weight: Bending, points 22
20 to 37
Thermal Diffusivity, mm2/s 30
4.2
Thermal Shock Resistance, points 22
12 to 31

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 52 to 66
0
Iron (Fe), % 0.5 to 2.5
70.7 to 78
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0.3 to 4.0
0 to 2.0
Nickel (Ni), % 0 to 3.0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 20.7 to 50.2
0