MakeItFrom.com
Menu (ESC)

CC764S Brass vs. Nickel 718

CC764S brass belongs to the copper alloys classification, while nickel 718 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC764S brass and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
12 to 50
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 680
930 to 1530
Tensile Strength: Yield (Proof), MPa 290
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 130
980
Melting Completion (Liquidus), °C 850
1340
Melting Onset (Solidus), °C 810
1260
Specific Heat Capacity, J/kg-K 400
450
Thermal Conductivity, W/m-K 94
11
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 36
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 2.9
13
Embodied Energy, MJ/kg 49
190
Embodied Water, L/kg 330
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 390
660 to 4560
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 24
31 to 51
Strength to Weight: Bending, points 22
25 to 35
Thermal Diffusivity, mm2/s 30
3.0
Thermal Shock Resistance, points 22
27 to 44

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0.2 to 0.8
Antimony (Sb), % 0 to 0.050
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 52 to 66
0 to 0.3
Iron (Fe), % 0.5 to 2.5
11.1 to 24.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0.3 to 4.0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 3.0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0 to 0.030
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
0.65 to 1.2
Zinc (Zn), % 20.7 to 50.2
0