MakeItFrom.com
Menu (ESC)

CC764S Brass vs. S32803 Stainless Steel

CC764S brass belongs to the copper alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC764S brass and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
210
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 15
18
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
81
Tensile Strength: Ultimate (UTS), MPa 680
680
Tensile Strength: Yield (Proof), MPa 290
560

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 850
1450
Melting Onset (Solidus), °C 810
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 94
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
19
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.7
Embodied Energy, MJ/kg 49
53
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390
760
Stiffness to Weight: Axial, points 7.6
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 30
4.4
Thermal Shock Resistance, points 22
22

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
28 to 29
Copper (Cu), % 52 to 66
0
Iron (Fe), % 0.5 to 2.5
62.9 to 67.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0.3 to 4.0
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 3.0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 20.7 to 50.2
0