MakeItFrom.com
Menu (ESC)

CC765S Brass vs. ACI-ASTM CG8M Steel

CC765S brass belongs to the copper alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 220
300

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1020
Melting Completion (Liquidus), °C 860
1450
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
16
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 34
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
20
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.1
Embodied Energy, MJ/kg 51
56
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
210
Resilience: Unit (Modulus of Resilience), kJ/m3 220
220
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 28
4.3
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
58.8 to 70
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 6.0
9.0 to 13
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0