MakeItFrom.com
Menu (ESC)

CC765S Brass vs. ASTM A356 Grade 1

CC765S brass belongs to the copper alloys classification, while ASTM A356 grade 1 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is ASTM A356 grade 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 220
280

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
18
Embodied Water, L/kg 330
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
210
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.35
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
98.3 to 100
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 0.7
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0