MakeItFrom.com
Menu (ESC)

CC765S Brass vs. ASTM A387 Grade 2 Steel

CC765S brass belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
470 to 550
Tensile Strength: Yield (Proof), MPa 220
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
420
Melting Completion (Liquidus), °C 860
1470
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
45
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.6
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 51
20
Embodied Water, L/kg 330
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
180 to 320
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
16 to 20
Strength to Weight: Bending, points 18
17 to 19
Thermal Diffusivity, mm2/s 28
12
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
97.1 to 98.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.1
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0