MakeItFrom.com
Menu (ESC)

CC765S Brass vs. ASTM A588 Steel

CC765S brass belongs to the copper alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 220
390

Thermal Properties

Latent Heat of Fusion, J/g 180
250 to 260
Maximum Temperature: Mechanical, °C 140
410
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1410 to 1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
43 to 44
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.3 to 2.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5 to 1.6
Embodied Energy, MJ/kg 51
20 to 22
Embodied Water, L/kg 330
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
400
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 28
12
Thermal Shock Resistance, points 17
16