MakeItFrom.com
Menu (ESC)

CC765S Brass vs. AWS ENiCrFe-2

CC765S brass belongs to the copper alloys classification, while AWS ENiCrFe-2 belongs to the nickel alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is AWS ENiCrFe-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
28
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 42
74
Tensile Strength: Ultimate (UTS), MPa 540
790

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Melting Completion (Liquidus), °C 860
1390
Melting Onset (Solidus), °C 820
1350
Specific Heat Capacity, J/kg-K 400
450
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
65
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 3.0
11
Embodied Energy, MJ/kg 51
160
Embodied Water, L/kg 330
260

Common Calculations

Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 18
22
Thermal Shock Resistance, points 17
24

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
13 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 51 to 65
0 to 0.5
Iron (Fe), % 0.5 to 2.0
0 to 12
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
1.0 to 3.5
Molybdenum (Mo), % 0
0.5 to 2.5
Nickel (Ni), % 0 to 6.0
62 to 85
Niobium (Nb), % 0
0.5 to 4.0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0
Residuals, % 0
0 to 0.5