MakeItFrom.com
Menu (ESC)

CC765S Brass vs. AWS ER70S-B2L

CC765S brass belongs to the copper alloys classification, while AWS ER70S-B2L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is AWS ER70S-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
590
Tensile Strength: Yield (Proof), MPa 220
450

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 51
21
Embodied Water, L/kg 330
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
530
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 28
11
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 51 to 65
0 to 0.35
Iron (Fe), % 0.5 to 2.0
95.3 to 97.6
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0 to 6.0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.1
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0
Residuals, % 0
0 to 0.5