MakeItFrom.com
Menu (ESC)

CC765S Brass vs. EN 1.1165 Cast Steel

CC765S brass belongs to the copper alloys classification, while EN 1.1165 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is EN 1.1165 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
11 to 20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
600 to 780
Tensile Strength: Yield (Proof), MPa 220
290 to 620

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 220
230 to 1010
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
21 to 28
Strength to Weight: Bending, points 18
20 to 24
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
19 to 25

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.25 to 0.32
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
97.2 to 98.6
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
1.2 to 1.8
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0