MakeItFrom.com
Menu (ESC)

CC765S Brass vs. EN 1.1221 Steel

CC765S brass belongs to the copper alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
210 to 250
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
10 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 540
730 to 870
Tensile Strength: Yield (Proof), MPa 220
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
48
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220
410 to 800
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
26 to 31
Strength to Weight: Bending, points 18
23 to 26
Thermal Diffusivity, mm2/s 28
13
Thermal Shock Resistance, points 17
23 to 28

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
97.1 to 98.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 6.0
0 to 0.4
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0