MakeItFrom.com
Menu (ESC)

CC765S Brass vs. EN 1.4057 Stainless Steel

CC765S brass belongs to the copper alloys classification, while EN 1.4057 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is EN 1.4057 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
11 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 540
840 to 980
Tensile Strength: Yield (Proof), MPa 220
530 to 790

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
850
Melting Completion (Liquidus), °C 860
1440
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 91
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 34
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 51
32
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
96 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220
700 to 1610
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
30 to 35
Strength to Weight: Bending, points 18
26 to 28
Thermal Diffusivity, mm2/s 28
6.7
Thermal Shock Resistance, points 17
30 to 35

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.12 to 0.22
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
77.7 to 83.4
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 1.5
Nickel (Ni), % 0 to 6.0
1.5 to 2.5
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0