MakeItFrom.com
Menu (ESC)

CC765S Brass vs. EN 1.4107 Stainless Steel

CC765S brass belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
18 to 21
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 540
620 to 700
Tensile Strength: Yield (Proof), MPa 220
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 140
740
Melting Completion (Liquidus), °C 860
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 91
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 34
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
7.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 51
30
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
420 to 840
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
22 to 25
Strength to Weight: Bending, points 18
21 to 22
Thermal Diffusivity, mm2/s 28
7.2
Thermal Shock Resistance, points 17
22 to 25

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 51 to 65
0 to 0.3
Iron (Fe), % 0.5 to 2.0
83.8 to 87.2
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 6.0
0.8 to 1.5
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.0
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 19.8 to 47.7
0