MakeItFrom.com
Menu (ESC)

CC765S Brass vs. Grade 18 Titanium

CC765S brass belongs to the copper alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 21
11 to 17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 540
690 to 980
Tensile Strength: Yield (Proof), MPa 220
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 140
330
Melting Completion (Liquidus), °C 860
1640
Melting Onset (Solidus), °C 820
1590
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 91
8.3
Thermal Expansion, µm/m-K 20
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 34
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 3.0
41
Embodied Energy, MJ/kg 51
670
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1380 to 3110
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 19
43 to 61
Strength to Weight: Bending, points 18
39 to 49
Thermal Diffusivity, mm2/s 28
3.4
Thermal Shock Resistance, points 17
47 to 67

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
2.5 to 3.5
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 51 to 65
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 2.0
0 to 0.25
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0
Nickel (Ni), % 0 to 6.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 19.8 to 47.7
0
Residuals, % 0
0 to 0.4