MakeItFrom.com
Menu (ESC)

CC765S Brass vs. SAE-AISI 1022 Steel

CC765S brass belongs to the copper alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
17 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
480 to 550
Tensile Strength: Yield (Proof), MPa 220
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
190 to 530
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
17 to 19
Strength to Weight: Bending, points 18
17 to 19
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
15 to 17

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
98.7 to 99.12
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.7 to 1.0
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0