MakeItFrom.com
Menu (ESC)

CC765S Brass vs. SAE-AISI 1039 Steel

CC765S brass belongs to the copper alloys classification, while SAE-AISI 1039 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is SAE-AISI 1039 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
14 to 18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
610 to 690
Tensile Strength: Yield (Proof), MPa 220
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
88 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 220
310 to 890
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
22 to 24
Strength to Weight: Bending, points 18
20 to 22
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
19 to 22

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.37 to 0.44
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
98.5 to 98.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.7 to 1.0
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0