MakeItFrom.com
Menu (ESC)

CC765S Brass vs. SAE-AISI 1340 Steel

CC765S brass belongs to the copper alloys classification, while SAE-AISI 1340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is SAE-AISI 1340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
160 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
11 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 540
540 to 730
Tensile Strength: Yield (Proof), MPa 220
300 to 620

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
240 to 1040
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
19 to 26
Strength to Weight: Bending, points 18
19 to 23
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
17 to 23

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.38 to 0.43
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
97.2 to 97.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
1.6 to 1.9
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0