MakeItFrom.com
Menu (ESC)

CC765S Brass vs. C70260 Copper

Both CC765S brass and C70260 copper are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 21
9.5 to 19
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 540
520 to 760
Tensile Strength: Yield (Proof), MPa 220
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 180
220
Maximum Temperature: Mechanical, °C 140
200
Melting Completion (Liquidus), °C 860
1060
Melting Onset (Solidus), °C 820
1040
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 91
160
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 34
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 51
43
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 220
710 to 1810
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
16 to 24
Strength to Weight: Bending, points 18
16 to 21
Thermal Diffusivity, mm2/s 28
45
Thermal Shock Resistance, points 17
18 to 27

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Copper (Cu), % 51 to 65
95.8 to 98.8
Iron (Fe), % 0.5 to 2.0
0
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0
Nickel (Ni), % 0 to 6.0
1.0 to 3.0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.1
0.2 to 0.7
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0
Residuals, % 0
0 to 0.5