MakeItFrom.com
Menu (ESC)

CC765S Brass vs. S43037 Stainless Steel

CC765S brass belongs to the copper alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
25
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 540
410
Tensile Strength: Yield (Proof), MPa 220
230

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
880
Melting Completion (Liquidus), °C 860
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 91
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 34
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.3
Embodied Energy, MJ/kg 51
32
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
88
Resilience: Unit (Modulus of Resilience), kJ/m3 220
130
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 28
6.7
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
77.9 to 83.9
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 1.0
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0.1 to 1.0
Zinc (Zn), % 19.8 to 47.7
0