MakeItFrom.com
Menu (ESC)

CC765S Brass vs. S44725 Stainless Steel

CC765S brass belongs to the copper alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
22
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 540
500
Tensile Strength: Yield (Proof), MPa 220
310

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 860
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 91
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 34
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
99
Resilience: Unit (Modulus of Resilience), kJ/m3 220
240
Stiffness to Weight: Axial, points 7.6
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
67.6 to 73.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 6.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
0 to 0.26
Zinc (Zn), % 19.8 to 47.7
0