MakeItFrom.com
Menu (ESC)

CC766S Brass vs. ASTM A302 Alloy Steel

CC766S brass belongs to the copper alloys classification, while ASTM A302 alloy steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC766S brass and the bottom bar is ASTM A302 alloy steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
180 to 190
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
20 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 500
590 to 620
Tensile Strength: Yield (Proof), MPa 190
350 to 390

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
410
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
39 to 51
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2 to 7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.2 to 8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.4 to 3.0
Density, g/cm3 8.0
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 2.8
1.5 to 1.6
Embodied Energy, MJ/kg 48
20 to 21
Embodied Water, L/kg 330
48 to 50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
330 to 410
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
21 to 22
Strength to Weight: Bending, points 18
20 to 21
Thermal Diffusivity, mm2/s 28
10 to 14
Thermal Shock Resistance, points 17
17 to 18