MakeItFrom.com
Menu (ESC)

CC766S Brass vs. SAE-AISI 1018 Steel

CC766S brass belongs to the copper alloys classification, while SAE-AISI 1018 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC766S brass and the bottom bar is SAE-AISI 1018 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
17 to 27
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 500
430 to 480
Tensile Strength: Yield (Proof), MPa 190
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 48
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
75 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 180
150 to 430
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
15 to 17
Strength to Weight: Bending, points 18
16 to 17
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 17
14 to 15

Alloy Composition

Aluminum (Al), % 0.3 to 1.8
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0.15 to 0.2
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
98.8 to 99.25
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 29.5 to 41.7
0