MakeItFrom.com
Menu (ESC)

CC766S Brass vs. C82000 Copper

Both CC766S brass and C82000 copper are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC766S brass and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 28
8.0 to 20
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 500
350 to 690
Tensile Strength: Yield (Proof), MPa 190
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 180
220
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 840
1090
Melting Onset (Solidus), °C 800
970
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 89
260
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
45
Electrical Conductivity: Equal Weight (Specific), % IACS 36
46

Otherwise Unclassified Properties

Base Metal Price, % relative 24
60
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.0
Embodied Energy, MJ/kg 48
77
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 180
80 to 1120
Stiffness to Weight: Axial, points 7.3
7.5
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
11 to 22
Strength to Weight: Bending, points 18
12 to 20
Thermal Diffusivity, mm2/s 28
76
Thermal Shock Resistance, points 17
12 to 24

Alloy Composition

Aluminum (Al), % 0.3 to 1.8
0 to 0.1
Antimony (Sb), % 0 to 0.1
0
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 58 to 64
95.2 to 97.4
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0 to 0.5
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 2.0
0 to 0.2
Silicon (Si), % 0 to 0.6
0 to 0.15
Tin (Sn), % 0 to 0.5
0 to 0.1
Zinc (Zn), % 29.5 to 41.7
0 to 0.1
Residuals, % 0
0 to 0.5