MakeItFrom.com
Menu (ESC)

CC766S Brass vs. C90700 Bronze

Both CC766S brass and C90700 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 62% of their average alloy composition in common.

For each property being compared, the top bar is CC766S brass and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
90
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 28
12
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 500
330
Tensile Strength: Yield (Proof), MPa 190
180

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 840
1000
Melting Onset (Solidus), °C 800
830
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 89
71
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
10
Electrical Conductivity: Equal Weight (Specific), % IACS 36
10

Otherwise Unclassified Properties

Base Metal Price, % relative 24
35
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 48
60
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
34
Resilience: Unit (Modulus of Resilience), kJ/m3 180
150
Stiffness to Weight: Axial, points 7.3
6.9
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 28
22
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0.3 to 1.8
0 to 0.0050
Antimony (Sb), % 0 to 0.1
0 to 0.2
Copper (Cu), % 58 to 64
88 to 90
Iron (Fe), % 0 to 0.5
0 to 0.15
Lead (Pb), % 0 to 0.5
0 to 0.5
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 2.0
0 to 0.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
10 to 12
Zinc (Zn), % 29.5 to 41.7
0 to 0.5
Residuals, % 0
0 to 0.6