MakeItFrom.com
Menu (ESC)

CC766S Brass vs. Z20301 Zinc

CC766S brass belongs to the copper alloys classification, while Z20301 zinc belongs to the zinc alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC766S brass and the bottom bar is Z20301 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
87
Elongation at Break, % 28
53
Poisson's Ratio 0.31
0.25
Shear Modulus, GPa 40
35
Tensile Strength: Ultimate (UTS), MPa 500
160
Tensile Strength: Yield (Proof), MPa 190
130

Thermal Properties

Latent Heat of Fusion, J/g 180
110
Maximum Temperature: Mechanical, °C 130
90
Melting Completion (Liquidus), °C 840
410
Melting Onset (Solidus), °C 800
400
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 89
110
Thermal Expansion, µm/m-K 20
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
27
Electrical Conductivity: Equal Weight (Specific), % IACS 36
37

Otherwise Unclassified Properties

Base Metal Price, % relative 24
11
Density, g/cm3 8.0
6.6
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 48
53
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
78
Resilience: Unit (Modulus of Resilience), kJ/m3 180
96
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 17
6.7
Strength to Weight: Bending, points 18
9.9
Thermal Diffusivity, mm2/s 28
44
Thermal Shock Resistance, points 17
5.0

Alloy Composition

Aluminum (Al), % 0.3 to 1.8
0 to 0.0020
Antimony (Sb), % 0 to 0.1
0
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 58 to 64
0 to 0.0050
Iron (Fe), % 0 to 0.5
0 to 0.010
Lead (Pb), % 0 to 0.5
0 to 0.1
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 2.0
0
Silicon (Si), % 0 to 0.6
0
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.020
Zinc (Zn), % 29.5 to 41.7
99.853 to 100