MakeItFrom.com
Menu (ESC)

CC767S Brass vs. ACI-ASTM CE3MN Steel

CC767S brass belongs to the copper alloys classification, while ACI-ASTM CE3MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 34
20
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 430
770
Tensile Strength: Yield (Proof), MPa 150
590

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
21
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.2
Embodied Energy, MJ/kg 47
58
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 100
840
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
27
Strength to Weight: Bending, points 16
24
Thermal Diffusivity, mm2/s 34
4.1
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
58.1 to 65.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 32.8 to 41.9
0