MakeItFrom.com
Menu (ESC)

CC767S Brass vs. AISI 431 Stainless Steel

CC767S brass belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34
15 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 430
890 to 1380
Tensile Strength: Yield (Proof), MPa 150
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 120
850
Melting Completion (Liquidus), °C 840
1510
Melting Onset (Solidus), °C 790
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 47
31
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1270 to 2770
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
32 to 50
Strength to Weight: Bending, points 16
27 to 36
Thermal Diffusivity, mm2/s 34
7.0
Thermal Shock Resistance, points 14
28 to 43

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
78.2 to 83.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 32.8 to 41.9
0