MakeItFrom.com
Menu (ESC)

CC767S Brass vs. ASTM A387 Grade 22 Steel

CC767S brass belongs to the copper alloys classification, while ASTM A387 grade 22 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 430
480 to 600
Tensile Strength: Yield (Proof), MPa 150
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 120
460
Melting Completion (Liquidus), °C 840
1470
Melting Onset (Solidus), °C 790
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 47
23
Embodied Water, L/kg 330
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
140 to 320
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
17 to 21
Strength to Weight: Bending, points 16
17 to 20
Thermal Diffusivity, mm2/s 34
11
Thermal Shock Resistance, points 14
14 to 17

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
95.1 to 96.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 32.8 to 41.9
0