MakeItFrom.com
Menu (ESC)

CC767S Brass vs. AWS E3155

CC767S brass belongs to the copper alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 34
23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 430
770

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 790
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
70
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.7
7.7
Embodied Energy, MJ/kg 47
110
Embodied Water, L/kg 330
300

Common Calculations

Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
26
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 34
3.3
Thermal Shock Resistance, points 14
20

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 58 to 64
0 to 0.75
Iron (Fe), % 0 to 0.5
23.3 to 36.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 1.0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 32.8 to 41.9
0